
TFT DISPLAY SPECIFICATION

曜 凌 光 電 股 份 有 限 公 司 Raystar Optronics, Inc.

42881台中市大雅區科雅路25號5樓 5F, No. 25, Keya Road, Daya Dist., Taichung City 42881, Taiwan T:+886-4-2565-0761 | F:+886-4-2565-0760 sales@raystar-optronics.com | www.raystar-optronics.com

RFA515600B-AYH-ENN

SPECIFICATION

CUSTOMER:

APPROVED BY	
PCB VERSION	
DATE	

FOR CUSTOMER USE ONLY

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY

Release DATE:

TFT Display Inspection Specification: https://www.raystar-optronics.com/download/products.htm
Precaution in use of TFT module: https://www.raystar-optronics.com/download/declaration.htm

Revision History

VERSION	DATE	REVISED PAGE NO.	Note
0	2023/08/29		First issue

Contents

- 1. Module Classification Information
- 2.Summary
- 3. General Specifications
- 4.Interface
- 5. Contour Drawing
- 6.Block Diagram
- 7. Absolute Maximum Ratings
- 8. Electrical Characteristics
- 9.Pixel Format Image
- 10.Interface Timings
- 11.Power ON/OFF Sequence
- 12. Optical Characteristics
- 13.Reliability
- 14.Other

1.Module Classification Information

R	F	A5	1560	0B	-	Α	Y	Н	-	E	N	N
1	2	3	4	5	-	6	7	8	•	9	10	11

Item		Description						
1	R : Raystar Opt	R : Raystar Optronics Inc.						
2	Display Type:F	Display Type:F→TFT Type, J→ Custom TFT						
	Solution: A: 128	x160 B:320x234 C:320x240 D:480x234 E:480x272						
3	F:800x	480 G:640x480 H:1024x600 I:320x480 J:240x320						
3	K:1280	x800 L:240x400 M:1024x768 N:128x128 O:480x800						
	P:640x	320 Q:800x600 S:480x128 T:800x320 A5: 1920 x 1080						
4	Display Size:1	5.6" TFT						
5	Version Code.							
	Model Type:							
	A: TFT LCD	6: TFT+FR						
		ONTROL BOARD H: TFT+D/V BOARD						
6	J: TFT+FR+A/D BOARD							
	N: TFT+FR+A/D BOARD+CONTROL B: TFT+POWER BD							
	BOARD 1: TFT+CONTROL BOARD							
	S: TFT+FR+POWER BOARD (DC TO DC)							
	Polarizer	I→Transmissive, W. T, 6:00 ; C→Transmissive, N. T, 6:00						
	Type,	L→Transmissive, W.T,12:00 ; F→Transmissive, N.T,12:00						
7	Temperature	Y→Transmissive,W.T, IPS TFT ;						
	range,	A→Transmissive, N.T, IPS TFT						
	View direction	Z→Transmissive, W.T, O-TFT						
		R→Transmissive, Super W.T, O-TFT						
		N→Transmissive, Super W.T, 6:00;						
		Q→Transmissive, Super W.T, 12:00						
		V→Transmissive, Super W.T, VA TFT						
8	Backlight	W: LED, White H: LED, High Light White						
	3	F: CCFL, White						
9	Driver Method	D: Digital A: Analog L : LVDS M:MIPI E:eDP						
10	Interface	N:without control board A:8Bit B:16Bit						
	monac	S:SPI Interface R: RS232 U:USB I: I2C						
		N: Without TS S: resistive touch panel						
11	TS	C : capacitive touch panel capacitive touch panel (G-F-F)						
		G:capacitive touch panel(G-G)						

2.Summary

The TFT15.6" is a color active matrix LCD module incorporation Oxide TFT. It is composed of a TFT LCD panel, a backlight, a timing controller, voltage reference, common voltage, column driver, and row driver circuit. This TFT LCD has a 15.6-inch diagonally measured active display area with resolution 1,920 horizontal by 1,080 vertical pixel array.

3.General Specifications

■ Size: 15.6 inch

■ Dot Matrix: 1920 x RGB x 1080 dots

■ Module dimension: 360.0(W) x 212.3(H)x 9.0(D) mm

Active area: 344.16 x 193.59 mm

■ Pixel pitch: 0.17925 (H) x 0.17925 (V) mm

■ LCD type: TFT, Normally Black, Transmissive

Viewing Angle: 80/80/80/80

Backlight Type: LED, Normally White

■ TFT Driver IC: TC2055G or equivalent

■ TFT Interface: eDP

■ With /Without TP: Without TP

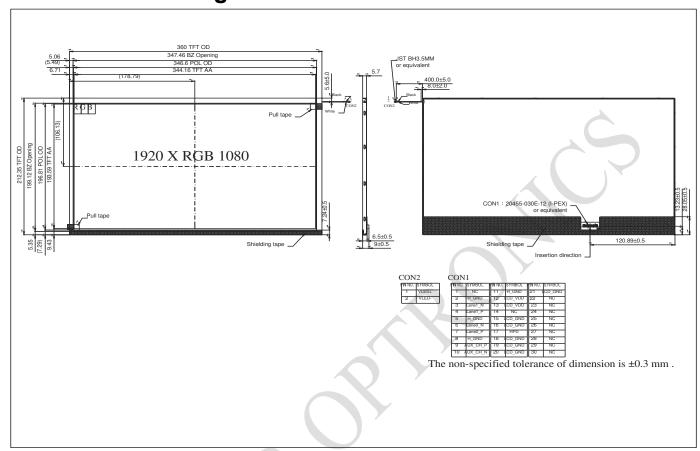
Surface: Anti-Glare

*Color tone slight changed by temperature and driving voltage.

4.Interface

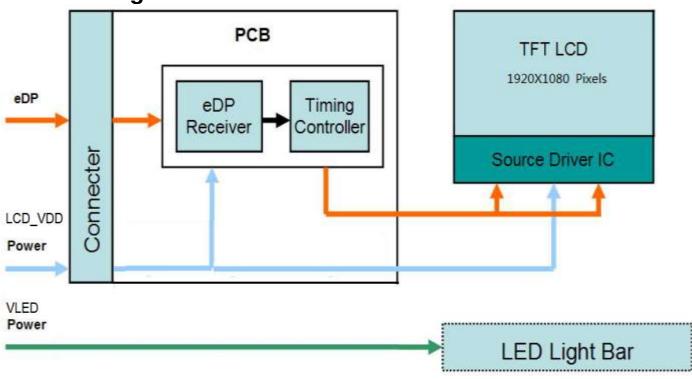
4.1. LCM PIN Definition

Pin No.	Signal Name	Description	Remarks
1	NC	Not Connect	
2	H_GND	Ground	
3	Lane1_N	Complement Signal Link Lane 1	
4	Lane1_P	True Signal Line 1	7
5	H_GND	Ground	
6	Lane0_N	Complement Signal Link Lane 0	
7	Lane0_P	True Signal Line 0	
8	H_GND	Ground	
9	AUX_CH_P	True Signal Auxiliary Ch.	
10	AUX_CH_N	Complement Signal Auxiliary Ch.	
11	H_GND	Ground	
12-13	LCD_VDD	LCD Logic and Driver Power	+3.3V
14	NC	Not Connect	
15-16	LCD_GND	Ground	
17	HPD	HPD Signal Pin	
18-21	LCD_GND	Ground	
22-30	NC	Not Connect	


Note: All input signals shall be low or Hi-Z state when LCD_VDD is off

4.2. Backlight PIN Definition

Pin No.	Symbol	Description
1	VLED+	Black, LED_ Anode
2	VLED-	White, LED_ Cathode



5.Contour Drawing

6.Block Diagram

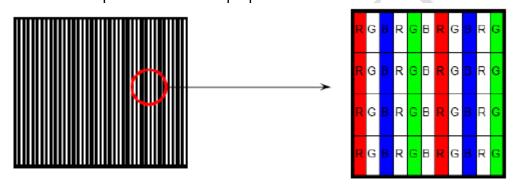
7. Absolute Maximum Ratings

ltem	Symbol	Min	Тур	Max	Unit				
Operating Temperature	TOP	-20	_	+70	°C				
Storage Temperature	TST	-30	_	+80	°C				

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

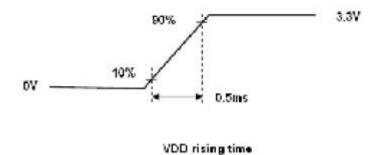
1. Temp. \leq 50°C, 80% RH MAX. Temp. >50°C, Absolute humidity shall be less than 80% RH at 50°C

8.Electrical Characteristics


8.1. TFT LCD Module

Parameter	Symbol	Min.	Тур.	Max.	Units	Condition
Logic/LCD Drive Voltage	LCD_VDD	3.0	3.3	3.6	V	
LCD_VDD Current	IDD	-	200	300	mA	Note A,
LCD_VDD Current	IDDMAX	-	-	400	mA	Note B, C
LCD_VDD Power	PDD	-	0.66	1.32	W	Note A, B, C
Inrush Current	IRush	-	-	2	Α	Note D, E
Allowable Logic/LCD Drive Ripple Voltage	LCD_VDDrp	-	-	100	mV	Vp-p

Note A: IDDBlack measurement condition, Normal pattern.

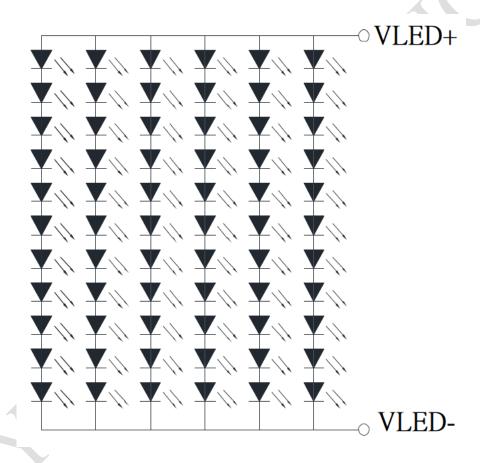

Note B: IDDMAX measurement condition, V-Stripe pattern.

Note C: Description of the V-Stripe pattern.

Note D : Measure Condition Figure 1.

Figure 1 LCD_VDD Rising Time

Note E : When the IRush Measure Condition at LCD_VDD rising time=1.5ms, the value of IRush(Typ.)=1A.



8.2. Backlight Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Condition
LED input	VLED	29.7	33	37.4	٧	Ta=25 °C
LED Forward Current	ILED	-	360	-	mA	
LED Life Time	-	-	30000	-	Hours	Ta=25 °C

Note A: Calculator value for LED chip specification.

Note B: The LED life time define as the estimated time to 50% degradation of initial luminous.

8.3. Signal Electrical Characteristics

Input signals shall be low or High-impedance state when LCD_VDD is off. It is recommended to refer the specifications of VESA Display Port Standard V1.2 in detail.

Table 1 Display Port Main Link

Parameter	Description	Min.	Тур.	Max.	Unit
V _{CM}	Differentia Common Mode Voltage	0	-	2.0	٧
V _{Diff P-P} Level 1	Differential Peak to Peak Voltage Level 1	0.34	0.40	0.46	٧
V _{Diff P-P} Level 2	Differential Peak to Peak Voltage Level 2	0.51	0.60	0.68	٧
VDiff P-P Level 3	Differential Peak to Peak Voltage Level 3	0.69	0.80	0.92	٧
Voiff P-P Level 4	Differential Peak to Peak Voltage Level 4	1.02	1.20	1.38	٧

Note: Fallow as VESA display port standard V1.2 at both 1.62 and 2.7Gbps link rates.

Figure 2 Display Port Main Link Signal Figure 3 Display Port AUX_CH Signal

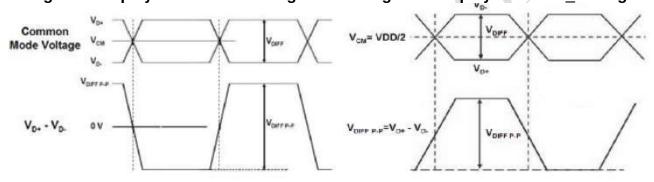


Table 2 Display Port AUX_CH

Parameter	Description	Min.	Тур.	Max.	Unit
V _{CM}	Differentia Common Mode Voltage	0	VDD/2	2	٧
VDiff P-P	Differential Peak to Peak Voltage	0.39	-	1.38	٧

Note: Fallow as VESA display port standard V1.2.

Table 3 Display Port VHPD

Parameter	Description	Min.	Тур.	Max.	Unit
V_{HPD}	HPD Voltage	2.25	+	3.60	V

Note: Fallow as VESA display port standard V1.2

Figure 4 Display Port Interface Power Up/Down Sequence, Normal System Operation

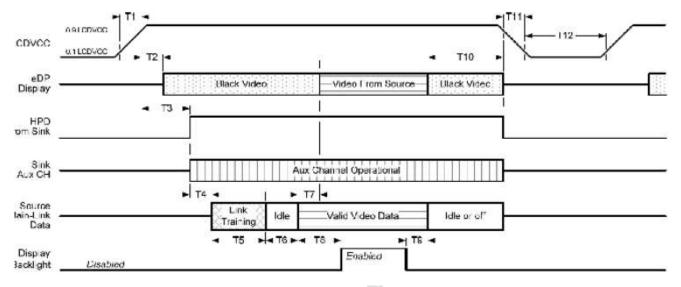
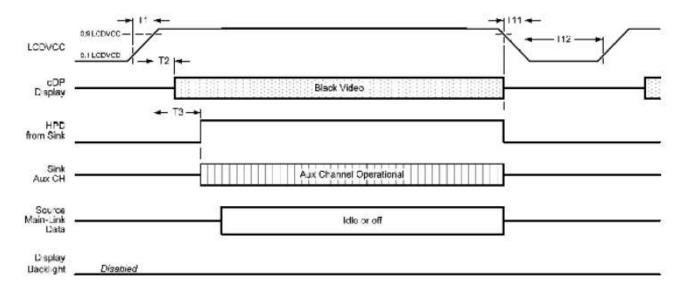



Figure 5 Display Port Interface Power Up/Down Sequence, Aux Channel Transaction Only

Table 4 eDP Panel Power Sequence Timing Parameters

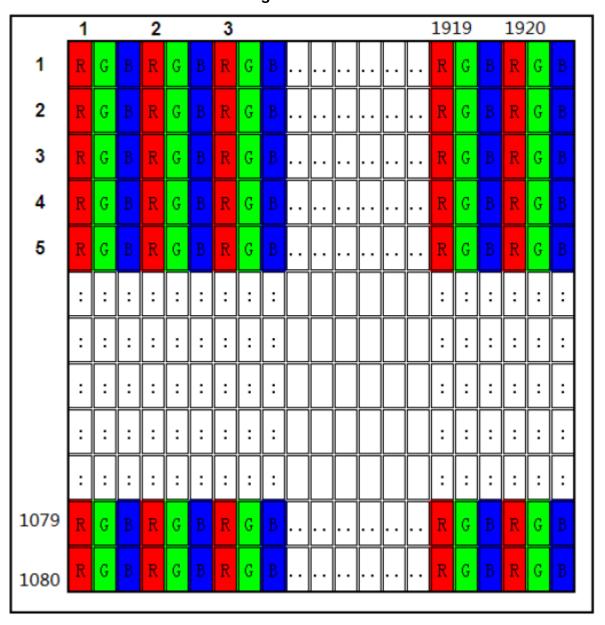
Timing	Description	Reqd.	Limits		Notes	
Parameter	Description	Ву	Min.	Max.	140163	
T1	Power rail rise time, 10% to 90%	Source	0.5ms	10ms	**	
Т2	Delay from LCD VCC to black video generation	Sink	Oms	200ms	Prevents display noise until valid video data is received from the Source.(see note 1 below)	
Т3	Delay from LCD VCC to HPD high	Sink	Oms	200ms	Sink Aux Channel must be operational upon HPD high.	
T4	Delay from HPD high to link training initialization	Source	4	¥	Allows for Source to read Link capability and initialize.	
T5	Link training duration	Source	-	÷	Dependant on Source link training protocol.	
Т6	Link idle	Source		ō	Min accounts for required BS-Idle pattern. Max allows for Source frame synchronization.	
Т7	Delay from valid video data from Source to video on display	Sink	Oms	50ms	Max allows Sink validate video data and timing.	
Т8	Delay from valid video from Source to backlight enable	Source		*	Source must assure display video is stable.	
Т9	Delay from backlight disable to end of valid video data	Source		ā	Source must assure backlight is no longer illuminated.(see note 1 below)	
T10	Delay from end of valid video data from Source to power off	Source	0ms	500ms		
T 11	Power rail fall time, 90% to 10%	Source	270	1 <mark>0</mark> ms	(E)	
T12	Power off time	Source	500ms	*	-	

Note 1: The Sink must include the ability to generate black video autonomously. The Sink must automatically enable black video under the following conditions:

- Upon LCDVCC power-on (within T2 max)
- When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)
- When no Main Link data, or invalid video data, is received from the Source. Black video must be displayed within 50ms (max) from the start of either condition. Video data can be deemed invalid based on MSA and timing information, for example.

Note 2: The Sink may implement the ability to disable the black video function, as described in Notes 1, above, for system development and debugging purposes.

Note 3: The Sink must support Aux Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready).


The Sink must be able to respond to an Aux Channel transaction with the time specified within T3max.

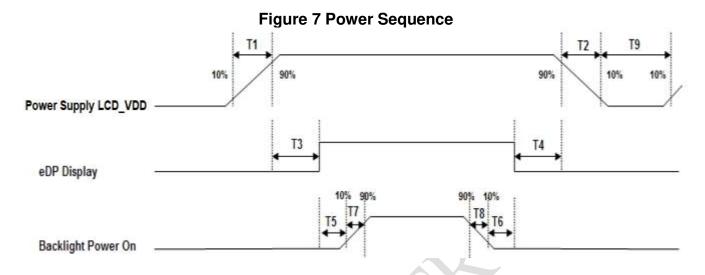
9.Pixel Format Image

Figure 6 shows the relationship of the input signals and LCD pixels format image.

Figure 6 Pixel Format

10.Interface Timings

Timing Characteristics


Basically, interface timings should match the 1920 x 1080 /60Hz manufacturing guide line timing. **Table 5 Interface Timings**

Parameter	Symbol	Unit	Min.	Тур.	Max.
Signal Clock Frequency	f _{dck}	MHz	140	152.5	165
H Total Time	T _{hp}	clocks -		2192	-
H Active Time	HA	clocks	1920		
H Blanking	T _{hfp}	clocks	-	272	-
V Total Time	T _{vp}	lines	-	1160	-
V Active Time	VA	lines		1080	
V Blanking	T _{vfp}	lines	-	80	-
∨ Frequency	f _v	Hz	55	60	65

11.Power ON/OFF Sequence

LCD_VDD power on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when LCD_VDD is off.

Table 6 Power Sequencing Requirements

Parameter	Unit	Min.	Max.
T1	ms	0.5	10
T2	ms	0	10
T3	ms	0	200
T4	ms	0	50
T5	ms	300	-
T6	ms	200	-
Т7	ms	0.5	10
T8	ms	0	10
Т9	ms	500	-

12.Optical Characteristics

Item		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr+ Tf	θ=0° \ Ф=0°	-	25	1	.ms	Note 3
Contrast ratio		CR	At optimized viewing angle	ı	1500	ı	ı	Note 4,
Color	White -	Wx	θ=0° \ Φ=0	0.26	0.306	0.36		Note 2,6,7
Chromaticity		Wy	υ=υ · Ψ=υ	0.27	0.328	0.37	7	
	Hor. —	ΘR	CR≧10	-	80	-		
Viewing		ΘL		-	80	-	Dog	Note 1
angle	angle Ver.	ФТ		-	80	-	Deg.	Note i
		ФВ		-	80	-		
Brightness		-	-	850	1000	,	cd/m ²	Center of display
Uniformity		(U)	-	75		-	%	Note 5

Ta=25±2°C

Note 1: Definition of viewing angle range

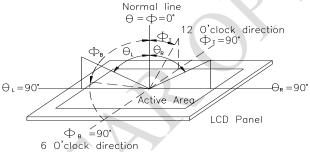


Fig 12.1. Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7orBM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

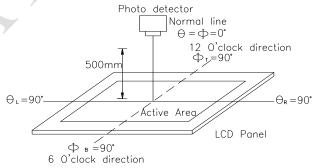
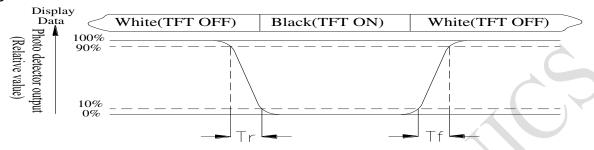



Fig 12.2. Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90%to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10%to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Contrast ratio (CR) = Luminance measured when LCD on the "White" state

Luminance measured when LCD on the "Black" state

Note 5: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (reference the picture in below). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax x100%

L = Active area length

W = Active area width

Fig 12.3. Definition of uniformity

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

13.Reliability

Content of Reliability Test (Wide temperature, -20°C~70°C)

Environmental Tes	Environmental Test						
Test Item	Content of Test	Test Condition	Note				
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2				
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C 200hrs	1,2				
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70°C 200hrs					
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1				
High Temperature/ Humidity Operation	The module should be allowed to stand at 50°C,80%RH max	50°C,80%RH 96hrs	1,2				
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20°C/70°C 10 cycles					
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3				
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=±8KV(contact), ±15KV(air), RS=330Ω CS=150pF 10 times					

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

Page: 1

LCM Sample Estimate Feedback Sheet						
Module Number:						
1 · Panel Specification :						
1. Panel Type:	□ Pass	□ NG ,				
2. View Direction:	□ Pass	□ NG ,				
3. Numbers of Dots:	□ Pass	□ NG ,				
4. View Area :	□ Pass	□ NG ,				
5. Active Area :	□ Pass	□ NG ,				
6.Operating Temperature:	□ Pass	□ NG ,				
7.Storage Temperature :	□ Pass	□ NG ,				
8.Others:	l					
2 · Mechanical Specification :						
1. PCB Size :	□ Pass	□ NG ,				
2.Frame Size :	□ Pass	□ NG ,				
3.Materal of Frame :	□ Pass	□ NG ,				
4.Connector Position:	□ Pass	□ NG ,				
5.Fix Hole Position:	□ Pass	□ NG ,				
6.Backlight Position:	□ Pass	□ NG ,				
7. Thickness of PCB:	□ Pass	□ NG ,				
8. Height of Frame to PCB:	□ Pass	□ NG ,				
9.Height of Module:	□ Pass	□ NG ,				
10.Others:	□ Pass	□ NG ,				
3 · Relative Hole Size :						
1.Pitch of Connector:	□ Pass	□ NG ,				
2.Hole size of Connector:	□ Pass	□ NG ,				
3.Mounting Hole size:	□ Pass	□ NG ,				
4.Mounting Hole Type:	□ Pass	□ NG ,				
5.Others:	□ Pass	□ NG ,				
4 · Backlight Specification :						
1.B/L Type:	□ Pass	□ NG ,				
2.B/L Color:	□ Pass	□ NG ,				
3.B/L Driving Voltage (Reference for LED Type) : □ Pass □ NG ,						
4.B/L Driving Current:	□ Pass	□ NG ,				
5.Brightness of B/L:	□ Pass	□ NG ,				
6.B/L Solder Method:	□ Pass	□ NG ,				
7.Others:	□ Pass	□ NG ,				

>> Go to page 2 <<

Page: 2 **Module Number:** 5 · Electronic Characteristics of Module : □ <u>NG</u> ,_____ 1.Input Voltage: □ Pass 2.Supply Current: □ Pass □ NG ,_____ □ NG ,_____ 3.Driving Voltage for LCD: □ Pass 4.Contrast for LCD: □ NG ,_____ □ Pass 5.B/L Driving Method: □ Pass □ NG ,_____ □ NG ,_____ 6.Negative Voltage Output: □ Pass 7.Interface Function: □ NG ,____ □ Pass □ NG ,____ 8.LCD Uniformity: □ Pass 9.ESD test: □ Pass □ NG ,_____ 10.Others: □ Pass □ NG ,_____ 6 \ Summary : Sales signature : _____ Customer Signature : _____ **Date:** / /